Elements of Problem-Centred Learning in Mathematics

SETA Talk

Dr Nikesh Solanki 07/04/22

Department of Mathematics, nikesh.solanki@manchester.ac.uk, Office: 2.234 Go to www.menti.com and use the code 5914 4533 1. The problem and context.

- 1. The problem and context.
- 2. How I tried to address the problem.

- 1. The problem and context.
- 2. How I tried to address the problem.
- 3. Some examples.

- 1. The problem and context.
- 2. How I tried to address the problem.
- 3. Some examples.
- 4. Impact?

- 1. The problem and context.
- 2. How I tried to address the problem.
- 3. Some examples.
- 4. Impact?
- 5. What next?

The need for skill-based curricula

"The workplace of the 21st century requires professionals who not only have an extensive store of knowledge, but who also know how to keep that knowledge up-to-date, apply it to solve problems, and function as a part of a team." [Hmelo, 2000, pg. 1]

The need for skill-based curricula

"The workplace of the 21st century requires professionals who not only have an extensive store of knowledge, but who also know how to keep that knowledge up-to-date, apply it to solve problems, and function as a part of a team." [Hmelo, 2000, pg. 1]

In Mathematics

There is a temptation to be fact/process-oriented.

The need for skill-based curricula

"The workplace of the 21st century requires professionals who not only have an extensive store of knowledge, but who also know how to keep that knowledge up-to-date, apply it to solve problems, and function as a part of a team." [Hmelo, 2000, pg. 1]

In Mathematics

There is a temptation to be fact/process-oriented.

Question

How can we address this balance so that there is more focus on (higher-order) graduate skills such as problem-solving and critical thinking?

Problem-Centred Learning (PCL)

What is it? An approach to teaching/learning where the learning is generated by students addressing an (open-ended) problem.

Problem-Centred Learning (PCL)

What is it? An approach to teaching/learning where the learning is generated by students addressing an (open-ended) problem.

Rationale for use

To develop a skill they need to practice using it *under* the mentorship of an expert!

What is it? An approach to teaching/learning where the learning is generated by students addressing an (open-ended) problem.

Rationale for use

To develop a skill they need to practice using it *under* the mentorship of an expert!

Relation to Problem-Based Learning (PBL) PCL can be thought of a looser version of PBL.

• problem-solving skills [Cook et al., 2017, Asad et al., 2015]

- problem-solving skills [Cook et al., 2017, Asad et al., 2015]
- critical reasoning skills [Cook et al., 2017, Jonassen and Hung, 2012]

- problem-solving skills [Cook et al., 2017, Asad et al., 2015]
- critical reasoning skills [Cook et al., 2017, Jonassen and Hung, 2012]
- explanation construction skills [Wu and Hsieh, 2006]

- problem-solving skills [Cook et al., 2017, Asad et al., 2015]
- critical reasoning skills [Cook et al., 2017, Jonassen and Hung, 2012]
- explanation construction skills [Wu and Hsieh, 2006]
- motivation and responsibility [Galand and Frenay, 2005, Wu and Hsieh, 2006]

- problem-solving skills [Cook et al., 2017, Asad et al., 2015]
- critical reasoning skills [Cook et al., 2017, Jonassen and Hung, 2012]
- explanation construction skills [Wu and Hsieh, 2006]
- motivation and responsibility
 [Galand and Frenay, 2005, Wu and Hsieh, 2006]
- meta-cognitive and reflective skills [Hmelo-Silver, 2004].

- problem-solving skills [Cook et al., 2017, Asad et al., 2015]
- critical reasoning skills [Cook et al., 2017, Jonassen and Hung, 2012]
- explanation construction skills [Wu and Hsieh, 2006]
- motivation and responsibility [Galand and Frenay, 2005, Wu and Hsieh, 2006]
- meta-cognitive and reflective skills [Hmelo-Silver, 2004].
- long-term memory [Yew and Goh, 2016].

Weaknesses and Caveats

Weakness

Students taught via traditional delivery seems to have better short term memory [Yew and Goh, 2016].

Weakness

Students taught via traditional delivery seems to have better short term memory [Yew and Goh, 2016].

Caveat

Students sometimes just need facts first to develop certain skills [Willingham, 2009].

Description:

- Present a problem at the beginning of the lecture as a *starter*. In fact, this would be up on the board before as they arrived.
- 2. Give the students a moment to work on the problem (individually or in groups as they pleased).
- 3. Discuss the problem as a class.
- 4. From the discussion draw out the objectives and desired outcomes for the session.

Description:

- Present a problem at the beginning of the lecture as a *starter*. In fact, this would be up on the board before as they arrived.
- 2. Give the students a moment to work on the problem (individually or in groups as they pleased).
- 3. Discuss the problem as a class.
- 4. From the discussion draw out the objectives and desired outcomes for the session.

Note

Description:

- Present a problem at the beginning of the lecture as a *starter*. In fact, this would be up on the board before as they arrived.
- 2. Give the students a moment to work on the problem (individually or in groups as they pleased).
- 3. Discuss the problem as a class.
- 4. From the discussion draw out the objectives and desired outcomes for the session.

Note

• *Dialogic teaching* [Alexander, 2008] techniques are key part of the class discussion.

Description:

- Present a problem at the beginning of the lecture as a *starter*. In fact, this would be up on the board before as they arrived.
- 2. Give the students a moment to work on the problem (individually or in groups as they pleased).
- 3. Discuss the problem as a class.
- 4. From the discussion draw out the objectives and desired outcomes for the session.

Note

- *Dialogic teaching* [Alexander, 2008] techniques are key part of the class discussion.
- I generally do not insist that students work on the problems in groups (for practical reasons).

Course Code	Course Name	Level	Description
MATH19821	0C1 Mathematics	Foundation Year	GCSE/A Level
MATH19812	0B2 Mathematics	Foundation Year	A Level
MATH4/63051	Model Theory	Level 4 & 6	Mathematical logic

Course Code	Course Name	Level	Description
MATH19821	0C1 Mathematics	Foundation Year	GCSE/A Level
MATH19812	0B2 Mathematics	Foundation Year	A Level
MATH4/63051	Model Theory	Level 4 & 6	Mathematical logic

I will focus on MATH19812 where this approach is the most developed.

Course Code	Course Name	Level	Description
MATH19821	0C1 Mathematics	Foundation Year	GCSE/A Level
MATH19812	0B2 Mathematics	Foundation Year	A Level
MATH4/63051	Model Theory	Level 4 & 6	Mathematical logic

I will focus on MATH19812 where this approach is the most developed. In particular, I will focus what I attempted pre-pandemic in the "traditional" (non-blended) lectures.

Course Code	Course Name	Level	Description
MATH19821	0C1 Mathematics	Foundation Year	GCSE/A Level
MATH19812	0B2 Mathematics	Foundation Year	A Level
MATH4/63051	Model Theory	Level 4 & 6	Mathematical logic

I will focus on MATH19812 where this approach is the most developed. In particular, I will focus what I attempted pre-pandemic in the "traditional" (non-blended) lectures.

0B2 2018/19:

Class Size	Lectures	Tutorials	Assessments
~330	2 per week	1 por wook	2 in-class tests (10% each),
/~000	2 per week 1 per we	I per week	an exam at the end (80%).

Exercise (1) Suppose that the population of a country is increasing at a rate of 20,000 a year. Express the population P(t) in year t as a function of t.

Exercise (2) In another country the rate of increase is equal to 0.2 times the current population. Can you express the population P(t) in year t as a function of t?

Exercise (3) In a third country we have:

- 1. the birth rate at time t is equal to 0.03 times the population at that point.
- 2. the death rate at time t is equal to 0.01 times the population at that point.

Can you express/model the population P(t) in year t as a function of t?

Exercise

Consider the following surface:

1. What can you say about the point P and why?

Exercise

Consider the following surface:

- 1. What can you say about the point P and why?
- 2. Given that the surface above is the graph of $f(x, y) = (x^2 + 3y^2)exp(1 x^2 y^2)$, can you find out what P actually is?

10

Exercise Consider the ODE

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2 + xy}.$$

1. Is this separable?

2. Can you solve it? If so, what is the solution?

Exercise Consider the ODE

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2 + xy}.$$

1. Is this separable?

2. Can you solve it? If so, what is the solution?

A Trick

Make the substitution y = vx, where v is another variable.

Exercise Consider the ODE

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2 + xy}.$$

1. Is this separable?

2. Can you solve it? If so, what is the solution?

A Trick

Make the substitution y = vx, where v is another variable.

Note

Since y is a function in x, so is v.

Exercise Consider the ODE

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2 + xy}.$$

1. Is this separable?

2. Can you solve it? If so, what is the solution?

A Trick

Make the substitution y = vx, where v is another variable.

Note

Since y is a function in x, so is v. For example, if $y = y(x) = x^2$ then v = v(x) = y/x = x.

Feedback from Peers

Feedback from Peers

 "I liked that you had a warm-up problem on the slides for students to engage with as they were getting ready for lecture. This led onto a recap of what happened last time, and discussion (and engagement from students) as to where today's lecture is heading."

Feedback from Peers

- "I liked that you had a warm-up problem on the slides for students to engage with as they were getting ready for lecture. This led onto a recap of what happened last time, and discussion (and engagement from students) as to where today's lecture is heading."
- "The student involvement was great good ideas were suggested"

- "I liked that you had a warm-up problem on the slides for students to engage with as they were getting ready for lecture. This led onto a recap of what happened last time, and discussion (and engagement from students) as to where today's lecture is heading."
- "The student involvement was great good ideas were suggested"
- "This was the right place to outline the objective and aims as they were motivated by the question. They were stated clearly, in relation to the context of the course."

• "He is very good in engaging student to participate in the lecture."

- "He is very good in engaging student to participate in the lecture."
- "Student engagement, asking questions, encouraging students to try to figure things out themselves".

- "He is very good in engaging student to participate in the lecture."
- "Student engagement, asking questions, encouraging students to try to figure things out themselves".
- "I liked how the lectures were structured, always starting with a Starter..."

Feedback specifically about these "starters" is limited.

In the Blended Learning format

The challenge here is that we need to provide the learning content asynchronously.

In the Blended Learning format

The challenge here is that we need to provide the learning content asynchronously.

What I have tried: Created videos that introduce the problem.

In the Blended Learning format

The challenge here is that we need to provide the learning content asynchronously.

What I have tried: Created videos that introduce the problem.

Does it work? I do not think so. No mention of it in the feedback and I am not sure many students I watching them.

Issue	Possible Action

Issue	Possible Action
Develop a deeper PCL approach in the Blended Learning Format	

Issue	Possible Action
	A flipped approach:
	1) Present questions to students
Davalar a daaray PCI arryaash	asynchronously.
bevelop a deeper PCL approach	2) Then attack the questions more
In the Blended Learning Format	deeply in tutorials/review sessions.
	3) Then release videos that cover a
	method of addressing the problem.

Issue	Possible Action
	A flipped approach:
	1) Present questions to students
Develop a deeper PCL approach	asynchronously.
Develop a deeper PCL approach	2) Then attack the questions more
In the Blended Learning Format	deeply in tutorials/review sessions.
	3) Then release videos that cover a
	method of addressing the problem.
Assess these deeper	
problem solving skills	

Issue	Possible Action	
	A flipped approach:	
	1) Present questions to students	
Develop a deeper PCL approach	asynchronously.	
in the Dianded Learning Formet	2) Then attack the questions more	
In the Blended Learning Format	deeply in tutorials/review sessions.	
	3) Then release videos that cover a	
	method of addressing the problem.	
Assess these deeper	More extended writing assessments	
problem solving skills	more extended writing assessments.	

Issue	Possible Action
	A flipped approach:
	1) Present questions to students
Develop a deeper PCL approach	asynchronously.
in the Planded Learning Format	2) Then attack the questions more
In the Blended Learning Format	deeply in tutorials/review sessions.
	3) Then release videos that cover a
	method of addressing the problem.
Assess these deeper	More extended writing assessments
problem solving skills	More extended writing assessments.
Maintaining deep discussion	
with Mentimeter and large classes	

Issue	Possible Action	
	A flipped approach:	
	1) Present questions to students	
Develop a deeper PCL approach	asynchronously.	
in the Planded Learning Format	2) Then attack the questions more	
in the Biended Learning Format	deeply in tutorials/review sessions.	
	3) Then release videos that cover a	
	method of addressing the problem.	
Assess these deeper	More extended writing assessments.	
problem solving skills		
Maintaining deep discussion	Use more think pair share	
with Mentimeter and large classes	Ose more unink-pall-share.	

Issue	Possible Action
Develop a deeper PCL approach in the Blended Learning Format	A flipped approach:
	1) Present questions to students
	asynchronously.
	2) Then attack the questions more
	deeply in tutorials/review sessions.
	3) Then release videos that cover a
	method of addressing the problem.
Assess these deeper	More extended writing assessments.
problem solving skills	
Maintaining deep discussion	Use more think-pair-share.
with Mentimeter and large classes	

Any ideas?

Alexander, R. (2008).

Towards Dialogic Teaching: Rethinking Classroom Talk. Dorchester Publishing Company, Incorporated.

 Asad, M., Iqbal, K., and Sabir, M. (2015).
 Effectiveness of problem based learning as a strategy to foster problem solving and critical reasoning skills among medical students.

Journal of Ayub Medical College, Abbottabad : JAMC, 27(3):604—607.

- Cook, K. E., Han, Y.-L., Shuman, T. R., and Mason, G. (2017).
 Effects of integrating authentic engineering problem centered learning on student problem solving. International Journal of Engineering Education, 33(1):272–282.
- Galand, B. and Frenay, M. (2005).
 L'approche par problèmes et par projets dans
 l'enseignement supérieur: Impact, enjeux et défis.
 Presses univ. de Louvain.

References iii

Hmelo, C. E. D. (2000).

Problem-Based Learning: Gaining Insights on Learning Interactions Through Multiple Methods of Inquiry, pages 1–16.

Lawerence Erlbaum Associates, Inc., Mahwah, New Jersey.

Hmelo-Silver, C. E. (2004).

Problem-based learning: What and how do students learn?

Educational psychology review, 16(3):235–266.

Jonassen, D. H. and Hung, W. (2012). **Problem-Based Learning, pages 2687–2690.** Springer US, Boston, MA.

🔋 Willingham, D. (2009).

Why don't children like school?: a cognitive scientist answers questions about how the mind works and what it means for your classroom.

Jossey-Bass.

Wu, H. and Hsieh, C. (2006).

Developing sixth graders' inquiry skills to construct explanations in inquiry-based learning environments. International Journal of Science Education, 28(11):1289–1313.

Yew, E. H. and Goh, K. (2016).

Problem-based learning: An overview of its process and impact on learning.

Health Professions Education, 2(2):75–79.